Data Envelopment Analysis as Nonparametric Least-Squares Regression

نویسندگان

  • Timo Kuosmanen
  • Andrew L. Johnson
چکیده

Data Envelopment Analysis (DEA) is known as a nonparametric mathematical programming approach to productive efficiency analysis. In this paper we show that DEA can be alternatively interpreted as nonparametric least squares regression subject to shape constraints on frontier and sign constraints on residuals. This reinterpretation reveals the classic parametric programming model by Aigner and Chu (1968) as a constrained special case of DEA. Applying these insights, we develop a nonparametric variant of the corrected ordinary least squares (COLS) method. We show that this new method, referred to as corrected concave nonparametric least squares (C2NLS), is consistent and asymptotically unbiased. The linkages established in this paper contribute to further integration of the econometric and axiomatic approaches to efficiency analysis. Subject classifications: frontier estimation, mathematical programming, nonparametric estimation, performance measurement and benchmarking. Area of review: Decision Analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Envelopment Analysis as Least-Squares Regression

Data envelopment analysis (DEA) is an axiomatic, mathematical programming approach to productive efficiency analysis and performance measurement. This paper shows that DEA can be interpreted as a nonparametric least squares regression subject to shape constraints on production frontier and sign constraints on residuals. Thus, DEA can be seen as a nonparametric counter-part of the corrected ordi...

متن کامل

Stochastic Nonparametric Envelopment of Data: Cross-sectional frontier estimation subject to shape constraints

The field of production frontier estimation is divided between the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper explores an amalgam of DEA and SFA that melds a nonparametric frontier with a stochastic composite error. Our model imposes the standard SFA assumptions for the inefficiency and noise terms. The frontier...

متن کامل

Stochastic Nonparametric Envelopment of Data: Frontier Estimation Subject to Shape Constraints

Literature of productive efficiency analysis is currently divided between two main paradigms: the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper develops a new encompassing framework that melds the SFA-style stochastic composite error term to the DEA-type nonparametric frontier that satisfies monotonicity and concav...

متن کامل

Stochastic non-smooth envelopment of data: Semi-parametric frontier estimation subject to shape constraints

The field of productive efficiency analysis is currently divided between two main paradigms: the deterministic, nonparametric Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). This paper examines an encompassing semiparametric frontier model that combines the DEA-type nonparametric frontier, which satisfies monotonicity and concavity, with the SFA-style stoc...

متن کامل

Consistency of Ridge Function Fields for Varying Nonparametric Regression

A nonparametric regression model proposed in [Pelletier and Frouin, Applied Optics, 2006] as a solution to the geophysical problem of ocean color remote sensing is studied. The model, called ridge function field, combines a regression estimate in the form of a superposition of ridge functions, or equivalently a neural network, with the idea pertaining to varyingcoefficients models, where the pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2010